
ノーベル物理学賞/化学賞と
AI for Science

東京大学 大学院新領域創成科学研究科

複雑理工学専攻

岡田真人

内容
• 自己紹介
• 2024年ノーベル物理学賞
• 脳のモデル
• AIとの関連
• 原典主義ではなく、波及効果主義

• AIの歴史
• ゲームソフトの開発と終焉
• 2016年のAlpha Goの登場
• Demis HassabisによるAI for Scienceの提案

• AI for Scienceの展望

自己紹介(理論物理学)
• 大阪市立大学理学部物理学科 (1981 - 1985)

– アモルファスシリンコンの成長と構造解析
• 大阪大学大学院理学研究科(金森研) (1985 – 1987)

– 希土類元素の光励起スペクトルの理論
• 三菱電機北伊丹製作所(量産エンジニア) (1987 - 1989)

– 化合物半導体（半導体レーザー）のエピタキシャル結晶成長
• 大阪大学大学院基礎工学研究科生物工学福島研 (1989 - 1996)

– ニューラルネットワーク
– 福島先生は畳み込み深層ニューラルネットワークの提案者

• JST ERATO 川人学習動態脳プロジェクト (1996 - 2001)
– 計算論的神経科学

• 理化学研究所 脳科学総合研究センター 甘利チーム (2001 - 04/06)
– 情報統計力学
– ベイズ推論，機械学習，データ駆動科学

• 東京大学・大学院新領域創成科学研究科 複雑理工学専攻
– データ駆動科学、ベイズ推論、スパースモデリング (2004/07 –)

内容
• 自己紹介
• 2024年ノーベル物理学賞
• 脳のモデル
• AIとの関連
• 原典主義ではなく、波及効果主義

• AIの歴史
• ゲームソフトの開発と終焉
• 2016年のAlpha Goの登場
• Demis HassabisによるAI for Scienceの提案

• AI for Scienceの展望

2024年ノーベル物理学賞
• The Nobel Prize in Physics 2024 was

awarded jointly to John J. Hopfield and
Geoffrey E. Hinton "for foundational
discoveries and inventions that enable
machine learning with artificial neural
networks”

• 正式な発表では、ニューラルネットを用いた機械
学習について、物理学賞が授与された。

• 岡田の私見
–脳のモデルとしてのニューラルネットワークに
関しても、大きな寄与があった二人の受賞

脳のモデル (1/2)
• Hopfield
– 1982年にPNASでHopfieldモデルを提案
– Hopfieldモデルと統計物理学のランダムスピン系の
対応を示し、記憶容量という明確な数理指標を提案
することで、多くの統計物理学者が脳科学に参入す
ることになった。

–それから40年を超え、脳科学に参入した統計物理
学者は、理論脳科学だけでなく実験脳科学に影響を
与えている。

– Hopfieldモデルから提案されたアトラクターニューラ
ルネットワークの概念は、現代の脳科学では必要不
可欠な概念になっている。

脳のモデル (2/2)
• Hinton
–1985年にBoltzman Machineを提案
–1986年にNatureで誤差逆伝播法を提案し、第
二次ニューラルネットワークブームの火付け役の
一つになった。

–RBM(Restricted Boltzmann Machine)により、
大規模多層パーセプトロンの学習が可能である
ことを示した。

–Fukushimaの脳の視覚野の階層構造に基づく
ネオコグニトロンに基づくAlex Netで、 2012年
IRSVRCで2位以下に圧倒的な差をつけて勝利

AIとの関連
• Hopfield
–LLMは、この波及効果の延長線上にある
と考えられる。LLMのTransformerある
いはAttention機構は、Hopfieldモデル
の改良版を通じて理解できる可能性が最
近議論されている。

• Hinton
–2012年のAlex Netをきっかけに、2016年
のAlphaGo至る現代風AIの源流を創っ
た。

日本人研究者の寄与 (1/3)
• Kaoru Nakano
– 1972年Associatron: Hopfieldモデルの原型

• Shu-ichi Amari
– 1972年Hopfieldモデルと同じモデルを提案

• Shu-ichi Amari
– 1969年誤差逆伝播法の提案
– これもノーベル賞の報告書に引用されていない
– https://www.nobelprize.org/uploads/2024/10/adv

anced-physicsprize2024-2.pdf
• Kunishiko Fukushima
– 1980年Neocognitronの提案

日本人研究者の寄与 (2/3)
NeocognitronへのBPの適用

日本人研究者の寄与 (3/3)
• 日本人はHopfieldモデルの理論解析に寄与
• Amari and Maginu (1988)
–Hopfieldモデルの統計神経力学

• Nishimori and Ozeki (1992)
• 統計神経力学の数値的評価
• Shiino and Fukai (1992)
–TAP法によるHopfield記憶容量の理論

• Okada (1995)
–レプリカ法と統計神経力学の統合理論

強磁性体

スピングラス
(1975)

Hopfield
(1985)

誤り訂正符
号

(1989)

LDPC
(1999
)
歪有圧縮
(2002)
歪有圧縮
(2002)

Gardner
(1988)

学習理論
(1991)

CDMA
(2001)

磁性体

情報統計力学曼荼羅
集団検査
(2008)
グラフ分割
(2011)

制約充足問題
(1996)
最適化
(2014)

圧縮センシング (2009)
行列分解 (2013)
ブートストラップ法
(2019)

情報統計力学の創成

STAM Methodsのノーベル物理学賞解説に記述予定
(岡田2008, 樺島 2024)

内容
• 自己紹介
• 2024年ノーベル物理学賞
• 脳のモデル
• AIとの関連
• 原典主義ではなく、波及効果主義

• AIの歴史
• ゲームソフトの開発と終焉
• 2016年のAlpha Goの登場
• Demis HassabisによるAI for Scienceの提案

• AI for Scienceの展望

AIの歴史: テストベッドとしてのゲーム
ARCH program:

building block play
(Winston 1970)

¥dWatson:Quiz
(IBM, Watson 2011)

DeepBlue: Chess
(1997)

1970

Othello
(Moor 1980)

1980 1990 2000 2010

AlphaGo: Go
(2016)

五十嵐、竹中、永田、岡田、AI for Scienceとデータ駆動科学、
応用統計学、45、75-86, (2016)

深層強化学習に基づく囲碁ソフト「AlphaGo」

Silver, D. (Google DeepMind) et al.
強
さ

欧州チャンピオンのプロ棋士に5戦全勝

Nature, 2016年1月28日出版
プロ
棋士 既存の囲碁ソフト

4 8 4 | N A T U R E | V O L 5 2 9 | 2 8 J A N U A R Y 2 0 1 6

ARTICLE
doi:10.1038/nature16961

Mastering the game of Go with deep
neural networks and tree search
David Silver1*, Aja Huang1*, Chris J. Maddison1, Arthur Guez1, Laurent Sifre1, George van den Driessche1,
Julian Schrittwieser1, Ioannis Antonoglou1, Veda Panneershelvam1, Marc Lanctot1, Sander Dieleman1, Dominik Grewe1,
John Nham2, Nal Kalchbrenner1, Ilya Sutskever2, Timothy Lillicrap1, Madeleine Leach1, Koray Kavukcuoglu1,
Thore Graepel1 & Demis Hassabis1

All games of perfect information have an optimal value function, v*(s),
which determines the outcome of the game, from every board position
or state s, under perfect play by all players. These games may be solved
by recursively computing the optimal value function in a search tree
containing approximately bd possible sequences of moves, where b is
the game’s breadth (number of legal moves per position) and d is its
depth (game length). In large games, such as chess (b ≈ 35, d ≈ 80)1 and
especially Go (b ≈ 250, d ≈ 150)1, exhaustive search is infeasible2,3, but
the effective search space can be reduced by two general principles.
First, the depth of the search may be reduced by position evaluation:
truncating the search tree at state s and replacing the subtree below s
by an approximate value function v(s) ≈ v*(s) that predicts the outcome
from state s. This approach has led to superhuman performance in
chess4, checkers5 and othello6, but it was believed to be intractable in Go
due to the complexity of the game7. Second, the breadth of the search
may be reduced by sampling actions from a policy p(a|s) that is a prob-
ability distribution over possible moves a in position s. For example,
Monte Carlo rollouts8 search to maximum depth without branching
at all, by sampling long sequences of actions for both players from a
policy p. Averaging over such rollouts can provide an effective position
evaluation, achieving superhuman performance in backgammon8 and
Scrabble9, and weak amateur level play in Go10.

Monte Carlo tree search (MCTS)11,12 uses Monte Carlo rollouts
to estimate the value of each state in a search tree. As more simu-
lations are executed, the search tree grows larger and the relevant
values become more accurate. The policy used to select actions during
search is also improved over time, by selecting children with higher
values. Asymptotically, this policy converges to optimal play, and the
evaluations converge to the optimal value function12. The strongest
current Go programs are based on MCTS, enhanced by policies that
are trained to predict human expert moves13. These policies are used
to narrow the search to a beam of high-probability actions, and to
sample actions during rollouts. This approach has achieved strong
amateur play13–15. However, prior work has been limited to shallow

policies13–15 or value functions16 based on a linear combination of
input features.

Recently, deep convolutional neural networks have achieved unprec-
edented performance in visual domains: for example, image classifica-
tion17, face recognition18, and playing Atari games19. They use many
layers of neurons, each arranged in overlapping tiles, to construct
increasingly abstract, localized representations of an image20. We
employ a similar architecture for the game of Go. We pass in the board
position as a 19 × 19 image and use convolutional layers to construct a
representation of the position. We use these neural networks to reduce
the effective depth and breadth of the search tree: evaluating positions
using a value network, and sampling actions using a policy network.

We train the neural networks using a pipeline consisting of several
stages of machine learning (Fig. 1). We begin by training a supervised
learning (SL) policy network pσ directly from expert human moves.
This provides fast, efficient learning updates with immediate feedback
and high-quality gradients. Similar to prior work13,15, we also train a
fast policy pπ that can rapidly sample actions during rollouts. Next, we
train a reinforcement learning (RL) policy network pρ that improves
the SL policy network by optimizing the final outcome of games of self-
play. This adjusts the policy towards the correct goal of winning games,
rather than maximizing predictive accuracy. Finally, we train a value
network vθ that predicts the winner of games played by the RL policy
network against itself. Our program AlphaGo efficiently combines the
policy and value networks with MCTS.

Supervised learning of policy networks
For the first stage of the training pipeline, we build on prior work
on predicting expert moves in the game of Go using supervised
learning13,21–24. The SL policy network pσ(a | s) alternates between con-
volutional layers with weights σ, and rectifier nonlinearities. A final soft-
max layer outputs a probability distribution over all legal moves a. The
input s to the policy network is a simple representation of the board state
(see Extended Data Table 2). The policy network is trained on randomly

The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its
enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach
to computer Go that uses ‘value networks’ to evaluate board positions and ‘policy networks’ to select moves. These deep
neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement
learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of state-
of-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a
new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm,
our program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go
champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the
full-sized game of Go, a feat previously thought to be at least a decade away.

1Google DeepMind, 5 New Street Square, London EC4A 3TW, UK. 2Google, 1600 Amphitheatre Parkway, Mountain View, California 94043, USA.
*These authors contributed equally to this work.

© 2016 Macmillan Publishers Limited. All rights reserved4 8 4 | N A T U R E | V O L 5 2 9 | 2 8 J A N U A R Y 2 0 1 6

ARTICLE
doi:10.1038/nature16961

Mastering the game of Go with deep
neural networks and tree search
David Silver1*, Aja Huang1*, Chris J. Maddison1, Arthur Guez1, Laurent Sifre1, George van den Driessche1,
Julian Schrittwieser1, Ioannis Antonoglou1, Veda Panneershelvam1, Marc Lanctot1, Sander Dieleman1, Dominik Grewe1,
John Nham2, Nal Kalchbrenner1, Ilya Sutskever2, Timothy Lillicrap1, Madeleine Leach1, Koray Kavukcuoglu1,
Thore Graepel1 & Demis Hassabis1

All games of perfect information have an optimal value function, v*(s),
which determines the outcome of the game, from every board position
or state s, under perfect play by all players. These games may be solved
by recursively computing the optimal value function in a search tree
containing approximately bd possible sequences of moves, where b is
the game’s breadth (number of legal moves per position) and d is its
depth (game length). In large games, such as chess (b ≈ 35, d ≈ 80)1 and
especially Go (b ≈ 250, d ≈ 150)1, exhaustive search is infeasible2,3, but
the effective search space can be reduced by two general principles.
First, the depth of the search may be reduced by position evaluation:
truncating the search tree at state s and replacing the subtree below s
by an approximate value function v(s) ≈ v*(s) that predicts the outcome
from state s. This approach has led to superhuman performance in
chess4, checkers5 and othello6, but it was believed to be intractable in Go
due to the complexity of the game7. Second, the breadth of the search
may be reduced by sampling actions from a policy p(a|s) that is a prob-
ability distribution over possible moves a in position s. For example,
Monte Carlo rollouts8 search to maximum depth without branching
at all, by sampling long sequences of actions for both players from a
policy p. Averaging over such rollouts can provide an effective position
evaluation, achieving superhuman performance in backgammon8 and
Scrabble9, and weak amateur level play in Go10.

Monte Carlo tree search (MCTS)11,12 uses Monte Carlo rollouts
to estimate the value of each state in a search tree. As more simu-
lations are executed, the search tree grows larger and the relevant
values become more accurate. The policy used to select actions during
search is also improved over time, by selecting children with higher
values. Asymptotically, this policy converges to optimal play, and the
evaluations converge to the optimal value function12. The strongest
current Go programs are based on MCTS, enhanced by policies that
are trained to predict human expert moves13. These policies are used
to narrow the search to a beam of high-probability actions, and to
sample actions during rollouts. This approach has achieved strong
amateur play13–15. However, prior work has been limited to shallow

policies13–15 or value functions16 based on a linear combination of
input features.

Recently, deep convolutional neural networks have achieved unprec-
edented performance in visual domains: for example, image classifica-
tion17, face recognition18, and playing Atari games19. They use many
layers of neurons, each arranged in overlapping tiles, to construct
increasingly abstract, localized representations of an image20. We
employ a similar architecture for the game of Go. We pass in the board
position as a 19 × 19 image and use convolutional layers to construct a
representation of the position. We use these neural networks to reduce
the effective depth and breadth of the search tree: evaluating positions
using a value network, and sampling actions using a policy network.

We train the neural networks using a pipeline consisting of several
stages of machine learning (Fig. 1). We begin by training a supervised
learning (SL) policy network pσ directly from expert human moves.
This provides fast, efficient learning updates with immediate feedback
and high-quality gradients. Similar to prior work13,15, we also train a
fast policy pπ that can rapidly sample actions during rollouts. Next, we
train a reinforcement learning (RL) policy network pρ that improves
the SL policy network by optimizing the final outcome of games of self-
play. This adjusts the policy towards the correct goal of winning games,
rather than maximizing predictive accuracy. Finally, we train a value
network vθ that predicts the winner of games played by the RL policy
network against itself. Our program AlphaGo efficiently combines the
policy and value networks with MCTS.

Supervised learning of policy networks
For the first stage of the training pipeline, we build on prior work
on predicting expert moves in the game of Go using supervised
learning13,21–24. The SL policy network pσ(a | s) alternates between con-
volutional layers with weights σ, and rectifier nonlinearities. A final soft-
max layer outputs a probability distribution over all legal moves a. The
input s to the policy network is a simple representation of the board state
(see Extended Data Table 2). The policy network is trained on randomly

The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its
enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach
to computer Go that uses ‘value networks’ to evaluate board positions and ‘policy networks’ to select moves. These deep
neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement
learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of state-
of-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a
new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm,
our program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go
champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the
full-sized game of Go, a feat previously thought to be at least a decade away.

1Google DeepMind, 5 New Street Square, London EC4A 3TW, UK. 2Google, 1600 Amphitheatre Parkway, Mountain View, California 94043, USA.
*These authors contributed equally to this work.

© 2016 Macmillan Publishers Limited. All rights reserved
4 8 4 | N A T U R E | V O L 5 2 9 | 2 8 J A N U A R Y 2 0 1 6

ARTICLE
doi:10.1038/nature16961

Mastering the game of Go with deep
neural networks and tree search
David Silver1*, Aja Huang1*, Chris J. Maddison1, Arthur Guez1, Laurent Sifre1, George van den Driessche1,
Julian Schrittwieser1, Ioannis Antonoglou1, Veda Panneershelvam1, Marc Lanctot1, Sander Dieleman1, Dominik Grewe1,
John Nham2, Nal Kalchbrenner1, Ilya Sutskever2, Timothy Lillicrap1, Madeleine Leach1, Koray Kavukcuoglu1,
Thore Graepel1 & Demis Hassabis1

All games of perfect information have an optimal value function, v*(s),
which determines the outcome of the game, from every board position
or state s, under perfect play by all players. These games may be solved
by recursively computing the optimal value function in a search tree
containing approximately bd possible sequences of moves, where b is
the game’s breadth (number of legal moves per position) and d is its
depth (game length). In large games, such as chess (b ≈ 35, d ≈ 80)1 and
especially Go (b ≈ 250, d ≈ 150)1, exhaustive search is infeasible2,3, but
the effective search space can be reduced by two general principles.
First, the depth of the search may be reduced by position evaluation:
truncating the search tree at state s and replacing the subtree below s
by an approximate value function v(s) ≈ v*(s) that predicts the outcome
from state s. This approach has led to superhuman performance in
chess4, checkers5 and othello6, but it was believed to be intractable in Go
due to the complexity of the game7. Second, the breadth of the search
may be reduced by sampling actions from a policy p(a|s) that is a prob-
ability distribution over possible moves a in position s. For example,
Monte Carlo rollouts8 search to maximum depth without branching
at all, by sampling long sequences of actions for both players from a
policy p. Averaging over such rollouts can provide an effective position
evaluation, achieving superhuman performance in backgammon8 and
Scrabble9, and weak amateur level play in Go10.

Monte Carlo tree search (MCTS)11,12 uses Monte Carlo rollouts
to estimate the value of each state in a search tree. As more simu-
lations are executed, the search tree grows larger and the relevant
values become more accurate. The policy used to select actions during
search is also improved over time, by selecting children with higher
values. Asymptotically, this policy converges to optimal play, and the
evaluations converge to the optimal value function12. The strongest
current Go programs are based on MCTS, enhanced by policies that
are trained to predict human expert moves13. These policies are used
to narrow the search to a beam of high-probability actions, and to
sample actions during rollouts. This approach has achieved strong
amateur play13–15. However, prior work has been limited to shallow

policies13–15 or value functions16 based on a linear combination of
input features.

Recently, deep convolutional neural networks have achieved unprec-
edented performance in visual domains: for example, image classifica-
tion17, face recognition18, and playing Atari games19. They use many
layers of neurons, each arranged in overlapping tiles, to construct
increasingly abstract, localized representations of an image20. We
employ a similar architecture for the game of Go. We pass in the board
position as a 19 × 19 image and use convolutional layers to construct a
representation of the position. We use these neural networks to reduce
the effective depth and breadth of the search tree: evaluating positions
using a value network, and sampling actions using a policy network.

We train the neural networks using a pipeline consisting of several
stages of machine learning (Fig. 1). We begin by training a supervised
learning (SL) policy network pσ directly from expert human moves.
This provides fast, efficient learning updates with immediate feedback
and high-quality gradients. Similar to prior work13,15, we also train a
fast policy pπ that can rapidly sample actions during rollouts. Next, we
train a reinforcement learning (RL) policy network pρ that improves
the SL policy network by optimizing the final outcome of games of self-
play. This adjusts the policy towards the correct goal of winning games,
rather than maximizing predictive accuracy. Finally, we train a value
network vθ that predicts the winner of games played by the RL policy
network against itself. Our program AlphaGo efficiently combines the
policy and value networks with MCTS.

Supervised learning of policy networks
For the first stage of the training pipeline, we build on prior work
on predicting expert moves in the game of Go using supervised
learning13,21–24. The SL policy network pσ(a | s) alternates between con-
volutional layers with weights σ, and rectifier nonlinearities. A final soft-
max layer outputs a probability distribution over all legal moves a. The
input s to the policy network is a simple representation of the board state
(see Extended Data Table 2). The policy network is trained on randomly

The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its
enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach
to computer Go that uses ‘value networks’ to evaluate board positions and ‘policy networks’ to select moves. These deep
neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement
learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of state-
of-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a
new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm,
our program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go
champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the
full-sized game of Go, a feat previously thought to be at least a decade away.

1Google DeepMind, 5 New Street Square, London EC4A 3TW, UK. 2Google, 1600 Amphitheatre Parkway, Mountain View, California 94043, USA.
*These authors contributed equally to this work.

© 2016 Macmillan Publishers Limited. All rights reserved

Alpha Goの登場

2024ノーベル化学賞受賞
Demis HassabisによるAI for Science
• I don’t think much about robotics myself

personally.
• What I’m really excited to use this kind of

AI for is science, and advancing that faster.
• I was giving a talk at CERN a few months

ago.
• I think it’d be cool if one day an AI was

involved in finding a new particle.
http://www.theverge.com/2016/3/10/1119277
4/demis-hassabis-interview-alphago-google-
deepmind-ai

http://www.theverge.com/2016/3/10/11192774/demis-
hassabis-interview-alphago-google-deepmind-ai

Next target of Demis Hassabis
AI for Science

内容
• 自己紹介
• 2024年ノーベル物理学賞
• 脳のモデル
• AIとの関連
• 原典主義ではなく、波及効果主義

• AIの歴史
• ゲームソフトの開発と終焉
• 2016年のAlpha Goの登場
• Demis HassabisによるAI for Scienceの提案

• AI for Scienceの展望

AI for Sceinceの国内での展開
• NIMS: マテリアルAI
• NICT:協創的AI研究促進ファンド
ただしNICT内部のファンド

• 次スライド以降の機能発現の3+1ステップモデルとデー
タ駆動科学の三つのレベルでAI for Scienceの導入

マテリアルズ/計測インフォマティクス
機能発現3+1モデル (1/2)

物理パラメータ 物理特性 機能

x y z
z = g(y)

相
関

p(y | x)
フォワードモデル

p(x | y)

ベイズ推論

キーテクロジー

スパースモデリング(SpM)

材料

特徴量抽出

プロセスパラメータ

w

相関

Y=
f(w
)

プ
ロ
セ
ス

特
徴
量
抽
出

Igarashi, Nagata, Kuwatani, Omori, Nakanishi-Ohno, and Okada “Three levels of
data-driven science” International meeting on High-dimensional Data-Driven
Science (HD3-2015), Journal of Physics: Conference Series, 699 (2016) 012001(2016)

マテリアルズ/計測インフォマティクス
機能発現3+1モデル (2/2)

• 知りたいことを、既知の学問的知見を用い
て、モジュール構造で表現

• 各モジュールでのデータ解析は、ベイズ推論
とスパースモデリングの二つのみ

• ベイズ推論とSpMに深層ネットワークを組み
込むことは可能

• 各モジュールのデータ解析は、次スライドの
データ駆動科学の三つのレベルで階層的に
取り扱う

データ駆動科学の三つのレベル (2016)

データ解析の目的とその適切性を議論し，実行可能な方法
の論理(方略)を構築

計算理論のレベルの目的，適切さ，方略を元に，系をモデ
ル化し，計算理論を数学的に表現する

モデリングの結果得られた計算問題を，実行するのための
アルゴリズムを議論する．

表現・アルゴリズム(統計学，機械学習，計算科学)

Igarashi, Nagata, Kuwatani, Omori, Nakanishi-Ohno
and M. Okada, “Three Levels of Data-Driven Science”,
Journal of Physics: Conference Series, 699, 012001, 2016.

モデリング(統計学，理論物理学，数理科学)

計算理論(対象の科学，計測科学)

まとめ
• 2024年ノーベル物理学賞について、脳のモデルとAI
との関連述べ、今回の受賞が原典主義ではなく、
波及効果主義であることを述べた。

• 次に、AIの歴史がゲームソフトの開発であり、2016
年のAlpha Goの登場により、それが終焉し、次
のターゲットを科学とするAI for Science が2024
年ノーベル化学賞受賞のDemis Hassabisによ
り提案されたことを紹介した。

• 最後に、AI for Scienceの今後の展望として、国内のAI
for Scienceの動向と、マテリアルズ/計測インフォマティ
クスに関する展望を、機能発現3+1モデル とデータ駆動
科学の三つのレベル を用いて述べた。

