
AI for Scienceの今までと
これから

東京大学 大学院新領域創成科学研究科

複雑理工学専攻

岡田真人

内容
• 自己紹介
• AIの歴史
• AI for Game:ゲームソフトの開発と終焉
• 2016年のAlpha Goの登場
• Demis HassabisによるAI for Scienceの提案

• AI for Scienceとデータ駆動科学
• AI for Material science
–機能発現の3+1ステップモデル

• AI for ScienceとLLM
• AI for Scienceの国内での動向
• まとめ

自己紹介(理論物理学)
• 大阪市立大学理学部物理学科 (1981 - 1985)

– アモルファスシリンコンの成長と構造解析
• 大阪大学大学院理学研究科(金森研) (1985 – 1987)

– 希土類元素の光励起スペクトルの理論
• 三菱電機北伊丹製作所(量産エンジニア) (1987 - 1989)

– 化合物半導体（半導体レーザー）のエピタキシャル結晶成長
• 大阪大学大学院基礎工学研究科生物工学福島研 (1989 - 1996)

– ニューラルネットワーク
– 福島先生は畳み込み深層ニューラルネットワークの提案者

• JST ERATO 川人学習動態脳プロジェクト (1996 - 2001)
– 計算論的神経科学

• 理化学研究所 脳科学総合研究センター 甘利チーム (2001 - 04/06)
– 情報統計力学
– ベイズ推論，機械学習，データ駆動科学

• 東京大学・大学院新領域創成科学研究科 複雑理工学専攻
– データ駆動科学、ベイズ推論、スパースモデリング (2004/07 –)

Take Home Messege
• AI for Gameの展開と終焉
• AI for Scienceの登場
–AIとScienceの双方向的相互作用

• AI for Scienceのロールモデル: AI for
Material engineering
• AI for Scienceの今まで
–機能発現の3ステップモデル

• AI for Scienceのこれから
–LLMの機能発現の3ステップモデルへ
のグランディング

内容
• 自己紹介
• AIの歴史
• AI for Game:ゲームソフトの開発と終焉
• 2016年のAlpha Goの登場
• Demis HassabisによるAI for Scienceの提案

• AI for Scienceとデータ駆動科学
• AI for Material science
–機能発現の3+1ステップモデル

• AI for ScienceとLLM
• AI for Scienceの国内での動向
• まとめ

AI for Gameの展開と終焉
ARCH program:

building block play
(Winston 1970)

¥dWatson:Quiz
(IBM, Watson 2011)

DeepBlue: Chess
(1997)

1970

Othello
(Moor 1980)

1980 1990 2000 2010

AlphaGo: Go
(2016)

Masato Okada, "2024 Nobel Prize in Physics and Chemistry:
From neural network models to materials engineering"
Science and Technology of Advanced Materials: Methods,
accepted, (2025)

深層強化学習に基づく囲碁ソフト「AlphaGo」

Silver, D. (Google DeepMind) et al.
強
さ

欧州チャンピオンのプロ棋士に5戦全勝

Nature, 2016年1月28日出版
プロ
棋士 既存の囲碁ソフト

4 8 4 | N A T U R E | V O L 5 2 9 | 2 8 J A N U A R Y 2 0 1 6

ARTICLE
doi:10.1038/nature16961

Mastering the game of Go with deep
neural networks and tree search
David Silver1*, Aja Huang1*, Chris J. Maddison1, Arthur Guez1, Laurent Sifre1, George van den Driessche1,
Julian Schrittwieser1, Ioannis Antonoglou1, Veda Panneershelvam1, Marc Lanctot1, Sander Dieleman1, Dominik Grewe1,
John Nham2, Nal Kalchbrenner1, Ilya Sutskever2, Timothy Lillicrap1, Madeleine Leach1, Koray Kavukcuoglu1,
Thore Graepel1 & Demis Hassabis1

All games of perfect information have an optimal value function, v*(s),
which determines the outcome of the game, from every board position
or state s, under perfect play by all players. These games may be solved
by recursively computing the optimal value function in a search tree
containing approximately bd possible sequences of moves, where b is
the game’s breadth (number of legal moves per position) and d is its
depth (game length). In large games, such as chess (b ≈ 35, d ≈ 80)1 and
especially Go (b ≈ 250, d ≈ 150)1, exhaustive search is infeasible2,3, but
the effective search space can be reduced by two general principles.
First, the depth of the search may be reduced by position evaluation:
truncating the search tree at state s and replacing the subtree below s
by an approximate value function v(s) ≈ v*(s) that predicts the outcome
from state s. This approach has led to superhuman performance in
chess4, checkers5 and othello6, but it was believed to be intractable in Go
due to the complexity of the game7. Second, the breadth of the search
may be reduced by sampling actions from a policy p(a|s) that is a prob-
ability distribution over possible moves a in position s. For example,
Monte Carlo rollouts8 search to maximum depth without branching
at all, by sampling long sequences of actions for both players from a
policy p. Averaging over such rollouts can provide an effective position
evaluation, achieving superhuman performance in backgammon8 and
Scrabble9, and weak amateur level play in Go10.

Monte Carlo tree search (MCTS)11,12 uses Monte Carlo rollouts
to estimate the value of each state in a search tree. As more simu-
lations are executed, the search tree grows larger and the relevant
values become more accurate. The policy used to select actions during
search is also improved over time, by selecting children with higher
values. Asymptotically, this policy converges to optimal play, and the
evaluations converge to the optimal value function12. The strongest
current Go programs are based on MCTS, enhanced by policies that
are trained to predict human expert moves13. These policies are used
to narrow the search to a beam of high-probability actions, and to
sample actions during rollouts. This approach has achieved strong
amateur play13–15. However, prior work has been limited to shallow

policies13–15 or value functions16 based on a linear combination of
input features.

Recently, deep convolutional neural networks have achieved unprec-
edented performance in visual domains: for example, image classifica-
tion17, face recognition18, and playing Atari games19. They use many
layers of neurons, each arranged in overlapping tiles, to construct
increasingly abstract, localized representations of an image20. We
employ a similar architecture for the game of Go. We pass in the board
position as a 19 × 19 image and use convolutional layers to construct a
representation of the position. We use these neural networks to reduce
the effective depth and breadth of the search tree: evaluating positions
using a value network, and sampling actions using a policy network.

We train the neural networks using a pipeline consisting of several
stages of machine learning (Fig. 1). We begin by training a supervised
learning (SL) policy network pσ directly from expert human moves.
This provides fast, efficient learning updates with immediate feedback
and high-quality gradients. Similar to prior work13,15, we also train a
fast policy pπ that can rapidly sample actions during rollouts. Next, we
train a reinforcement learning (RL) policy network pρ that improves
the SL policy network by optimizing the final outcome of games of self-
play. This adjusts the policy towards the correct goal of winning games,
rather than maximizing predictive accuracy. Finally, we train a value
network vθ that predicts the winner of games played by the RL policy
network against itself. Our program AlphaGo efficiently combines the
policy and value networks with MCTS.

Supervised learning of policy networks
For the first stage of the training pipeline, we build on prior work
on predicting expert moves in the game of Go using supervised
learning13,21–24. The SL policy network pσ(a | s) alternates between con-
volutional layers with weights σ, and rectifier nonlinearities. A final soft-
max layer outputs a probability distribution over all legal moves a. The
input s to the policy network is a simple representation of the board state
(see Extended Data Table 2). The policy network is trained on randomly

The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its
enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach
to computer Go that uses ‘value networks’ to evaluate board positions and ‘policy networks’ to select moves. These deep
neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement
learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of state-
of-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a
new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm,
our program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go
champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the
full-sized game of Go, a feat previously thought to be at least a decade away.

1Google DeepMind, 5 New Street Square, London EC4A 3TW, UK. 2Google, 1600 Amphitheatre Parkway, Mountain View, California 94043, USA.
*These authors contributed equally to this work.

© 2016 Macmillan Publishers Limited. All rights reserved4 8 4 | N A T U R E | V O L 5 2 9 | 2 8 J A N U A R Y 2 0 1 6

ARTICLE
doi:10.1038/nature16961

Mastering the game of Go with deep
neural networks and tree search
David Silver1*, Aja Huang1*, Chris J. Maddison1, Arthur Guez1, Laurent Sifre1, George van den Driessche1,
Julian Schrittwieser1, Ioannis Antonoglou1, Veda Panneershelvam1, Marc Lanctot1, Sander Dieleman1, Dominik Grewe1,
John Nham2, Nal Kalchbrenner1, Ilya Sutskever2, Timothy Lillicrap1, Madeleine Leach1, Koray Kavukcuoglu1,
Thore Graepel1 & Demis Hassabis1

All games of perfect information have an optimal value function, v*(s),
which determines the outcome of the game, from every board position
or state s, under perfect play by all players. These games may be solved
by recursively computing the optimal value function in a search tree
containing approximately bd possible sequences of moves, where b is
the game’s breadth (number of legal moves per position) and d is its
depth (game length). In large games, such as chess (b ≈ 35, d ≈ 80)1 and
especially Go (b ≈ 250, d ≈ 150)1, exhaustive search is infeasible2,3, but
the effective search space can be reduced by two general principles.
First, the depth of the search may be reduced by position evaluation:
truncating the search tree at state s and replacing the subtree below s
by an approximate value function v(s) ≈ v*(s) that predicts the outcome
from state s. This approach has led to superhuman performance in
chess4, checkers5 and othello6, but it was believed to be intractable in Go
due to the complexity of the game7. Second, the breadth of the search
may be reduced by sampling actions from a policy p(a|s) that is a prob-
ability distribution over possible moves a in position s. For example,
Monte Carlo rollouts8 search to maximum depth without branching
at all, by sampling long sequences of actions for both players from a
policy p. Averaging over such rollouts can provide an effective position
evaluation, achieving superhuman performance in backgammon8 and
Scrabble9, and weak amateur level play in Go10.

Monte Carlo tree search (MCTS)11,12 uses Monte Carlo rollouts
to estimate the value of each state in a search tree. As more simu-
lations are executed, the search tree grows larger and the relevant
values become more accurate. The policy used to select actions during
search is also improved over time, by selecting children with higher
values. Asymptotically, this policy converges to optimal play, and the
evaluations converge to the optimal value function12. The strongest
current Go programs are based on MCTS, enhanced by policies that
are trained to predict human expert moves13. These policies are used
to narrow the search to a beam of high-probability actions, and to
sample actions during rollouts. This approach has achieved strong
amateur play13–15. However, prior work has been limited to shallow

policies13–15 or value functions16 based on a linear combination of
input features.

Recently, deep convolutional neural networks have achieved unprec-
edented performance in visual domains: for example, image classifica-
tion17, face recognition18, and playing Atari games19. They use many
layers of neurons, each arranged in overlapping tiles, to construct
increasingly abstract, localized representations of an image20. We
employ a similar architecture for the game of Go. We pass in the board
position as a 19 × 19 image and use convolutional layers to construct a
representation of the position. We use these neural networks to reduce
the effective depth and breadth of the search tree: evaluating positions
using a value network, and sampling actions using a policy network.

We train the neural networks using a pipeline consisting of several
stages of machine learning (Fig. 1). We begin by training a supervised
learning (SL) policy network pσ directly from expert human moves.
This provides fast, efficient learning updates with immediate feedback
and high-quality gradients. Similar to prior work13,15, we also train a
fast policy pπ that can rapidly sample actions during rollouts. Next, we
train a reinforcement learning (RL) policy network pρ that improves
the SL policy network by optimizing the final outcome of games of self-
play. This adjusts the policy towards the correct goal of winning games,
rather than maximizing predictive accuracy. Finally, we train a value
network vθ that predicts the winner of games played by the RL policy
network against itself. Our program AlphaGo efficiently combines the
policy and value networks with MCTS.

Supervised learning of policy networks
For the first stage of the training pipeline, we build on prior work
on predicting expert moves in the game of Go using supervised
learning13,21–24. The SL policy network pσ(a | s) alternates between con-
volutional layers with weights σ, and rectifier nonlinearities. A final soft-
max layer outputs a probability distribution over all legal moves a. The
input s to the policy network is a simple representation of the board state
(see Extended Data Table 2). The policy network is trained on randomly

The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its
enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach
to computer Go that uses ‘value networks’ to evaluate board positions and ‘policy networks’ to select moves. These deep
neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement
learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of state-
of-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a
new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm,
our program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go
champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the
full-sized game of Go, a feat previously thought to be at least a decade away.

1Google DeepMind, 5 New Street Square, London EC4A 3TW, UK. 2Google, 1600 Amphitheatre Parkway, Mountain View, California 94043, USA.
*These authors contributed equally to this work.

© 2016 Macmillan Publishers Limited. All rights reserved
4 8 4 | N A T U R E | V O L 5 2 9 | 2 8 J A N U A R Y 2 0 1 6

ARTICLE
doi:10.1038/nature16961

Mastering the game of Go with deep
neural networks and tree search
David Silver1*, Aja Huang1*, Chris J. Maddison1, Arthur Guez1, Laurent Sifre1, George van den Driessche1,
Julian Schrittwieser1, Ioannis Antonoglou1, Veda Panneershelvam1, Marc Lanctot1, Sander Dieleman1, Dominik Grewe1,
John Nham2, Nal Kalchbrenner1, Ilya Sutskever2, Timothy Lillicrap1, Madeleine Leach1, Koray Kavukcuoglu1,
Thore Graepel1 & Demis Hassabis1

All games of perfect information have an optimal value function, v*(s),
which determines the outcome of the game, from every board position
or state s, under perfect play by all players. These games may be solved
by recursively computing the optimal value function in a search tree
containing approximately bd possible sequences of moves, where b is
the game’s breadth (number of legal moves per position) and d is its
depth (game length). In large games, such as chess (b ≈ 35, d ≈ 80)1 and
especially Go (b ≈ 250, d ≈ 150)1, exhaustive search is infeasible2,3, but
the effective search space can be reduced by two general principles.
First, the depth of the search may be reduced by position evaluation:
truncating the search tree at state s and replacing the subtree below s
by an approximate value function v(s) ≈ v*(s) that predicts the outcome
from state s. This approach has led to superhuman performance in
chess4, checkers5 and othello6, but it was believed to be intractable in Go
due to the complexity of the game7. Second, the breadth of the search
may be reduced by sampling actions from a policy p(a|s) that is a prob-
ability distribution over possible moves a in position s. For example,
Monte Carlo rollouts8 search to maximum depth without branching
at all, by sampling long sequences of actions for both players from a
policy p. Averaging over such rollouts can provide an effective position
evaluation, achieving superhuman performance in backgammon8 and
Scrabble9, and weak amateur level play in Go10.

Monte Carlo tree search (MCTS)11,12 uses Monte Carlo rollouts
to estimate the value of each state in a search tree. As more simu-
lations are executed, the search tree grows larger and the relevant
values become more accurate. The policy used to select actions during
search is also improved over time, by selecting children with higher
values. Asymptotically, this policy converges to optimal play, and the
evaluations converge to the optimal value function12. The strongest
current Go programs are based on MCTS, enhanced by policies that
are trained to predict human expert moves13. These policies are used
to narrow the search to a beam of high-probability actions, and to
sample actions during rollouts. This approach has achieved strong
amateur play13–15. However, prior work has been limited to shallow

policies13–15 or value functions16 based on a linear combination of
input features.

Recently, deep convolutional neural networks have achieved unprec-
edented performance in visual domains: for example, image classifica-
tion17, face recognition18, and playing Atari games19. They use many
layers of neurons, each arranged in overlapping tiles, to construct
increasingly abstract, localized representations of an image20. We
employ a similar architecture for the game of Go. We pass in the board
position as a 19 × 19 image and use convolutional layers to construct a
representation of the position. We use these neural networks to reduce
the effective depth and breadth of the search tree: evaluating positions
using a value network, and sampling actions using a policy network.

We train the neural networks using a pipeline consisting of several
stages of machine learning (Fig. 1). We begin by training a supervised
learning (SL) policy network pσ directly from expert human moves.
This provides fast, efficient learning updates with immediate feedback
and high-quality gradients. Similar to prior work13,15, we also train a
fast policy pπ that can rapidly sample actions during rollouts. Next, we
train a reinforcement learning (RL) policy network pρ that improves
the SL policy network by optimizing the final outcome of games of self-
play. This adjusts the policy towards the correct goal of winning games,
rather than maximizing predictive accuracy. Finally, we train a value
network vθ that predicts the winner of games played by the RL policy
network against itself. Our program AlphaGo efficiently combines the
policy and value networks with MCTS.

Supervised learning of policy networks
For the first stage of the training pipeline, we build on prior work
on predicting expert moves in the game of Go using supervised
learning13,21–24. The SL policy network pσ(a | s) alternates between con-
volutional layers with weights σ, and rectifier nonlinearities. A final soft-
max layer outputs a probability distribution over all legal moves a. The
input s to the policy network is a simple representation of the board state
(see Extended Data Table 2). The policy network is trained on randomly

The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its
enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach
to computer Go that uses ‘value networks’ to evaluate board positions and ‘policy networks’ to select moves. These deep
neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement
learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of state-
of-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a
new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm,
our program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go
champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the
full-sized game of Go, a feat previously thought to be at least a decade away.

1Google DeepMind, 5 New Street Square, London EC4A 3TW, UK. 2Google, 1600 Amphitheatre Parkway, Mountain View, California 94043, USA.
*These authors contributed equally to this work.

© 2016 Macmillan Publishers Limited. All rights reserved

Alpha Goの登場

内容
• 自己紹介
• AIの歴史
• AI for Game:ゲームソフトの開発と終焉
• 2016年のAlpha Goの登場
• Demis HassabisによるAI for Scienceの提案

• AI for Scienceとデータ駆動科学
• AI for Material science
–機能発現の3+1ステップモデル

• AI for ScienceとLLM
• AI for Scienceの国内での動向
• まとめ

2024ノーベル化学賞受賞
Demis HassabisによるAI for Science
• I don’t think much about robotics myself

personally.

• What I’m really excited to use this kind of AI for
is science, and advancing that faster.

• I was giving a talk at CERN a few months ago.

• I think it’d be cool if one day an AI was involved
in finding a new particle.

http://www.theverge.com/2016/3/10/11192774/demis-
hassabis-interview-alphago-google-deepmind-ai

http://www.theverge.com/2016/3/10/11192774/demis-
hassabis-interview-alphago-google-deepmind-ai

Next target of Demis Hassabis
AI for Science

内容
• 自己紹介
• AIの歴史
• AI for Game:ゲームソフトの開発と終焉
• 2016年のAlpha Goの登場
• Demis HassabisによるAI for Scienceの提案

• AI for Scienceとデータ駆動科学
• AI for Material science
–機能発現の3+1ステップモデル

• AI for ScienceとLLM
• AI for Scienceの国内での動向
• まとめ

データ駆動科学とは
• 機械学習などのAIを使い，各学問分野の問題を
解いていく というアプローチ

• 実験/計測/計算データの背後にある潜在的構造
の抽出に関して，データが対象とする学問に依存
しない普遍的な学問体系

• 同じアルゴリズムがスケールや対象を超えて，有
用であることが多いという経験的事実を背景とし
て，その理由を問い，背後にある普遍性から，
データ解析自体を学問的対象とする枠組み．

• 全ての実験/計測のデータ解析をデータ駆動学の
三つのレベルの鋳型に押し込んで考える

David Marrの三つのレベル (1982)

計算理論

計算の目的とその適切性を議論し，実行可能
な方法の論理を構築

計算理論の実行方法．特にその入力と出力の表
現と変換のためのアルゴリズム

表現とアルゴリズムの物理的な実現: ニューラルネットーク

表現・アルゴリズム

ハードウェア実装

David Marrは複雑な情報処理装置を理解するには以下
の三つのレベルが必要であると説いた

David Marr Vision: A Computational Investigation into the
Human Representation and Processing of Visual Information
(1982)

データ駆動科学の三つのレベル (2016)

データ解析の目的とその適切性を議論し，実行可能な方法
の論理(方略)を構築

計算理論のレベルの目的，適切さ，方略を元に，系をモデ
ル化し，計算理論を数学的に表現する

モデリングの結果得られた計算問題を，実行するのための
アルゴリズムを議論する．

表現・アルゴリズム(統計学，機械学習，計算科学)

Igarashi, Nagata, Kuwatani, Omori, Nakanishi-Ohno
and M. Okada, “Three Levels of Data-Driven Science”,
Journal of Physics: Conference Series, 699, 012001, 2016.

モデリング(統計学，理論物理学，数理科学)

計算理論(対象の科学，計測科学)

連立方程式の応用と
データ駆動科学の三つのレベル

連立方程式への変換

加減法，代入法

連立方程式とその応用

鶴亀算 食塩水 など

(五十嵐，竹中，永田，岡田，応用統計学，2016)

表現・モデリング

アルゴリズム

データ駆動科学の
三つのレベル

計算理論

内容
• 自己紹介
• AIの歴史
• AI for Game:ゲームソフトの開発と終焉
• 2016年のAlpha Goの登場
• Demis HassabisによるAI for Scienceの提案

• AI for Scienceとデータ駆動科学
• AI for Material science
–機能発現の3+1ステップモデル

• AI for ScienceとLLM
• AI for Scienceの国内での動向
• まとめ

AI for Material Science
機能発現3+1モデル (1/2)

物理パラメータ 物理特性 機能

x y z
z = g(y)

相
関

p(y | x)
フォワードモデル

p(x | y)

ベイズ推論

キーテクロジー
スパースモデリング(SpM)

材料
特徴量抽出

プロセスパラメータ

w

相関

Y=
f(w
)

プ
ロ
セ
ス

特
徴
量
抽
出

Igarashi, Nagata, Kuwatani, Omori, Nakanishi-Ohno, and Okada “Three levels of
data-driven science” International meeting on High-dimensional Data-Driven
Science (HD3-2015), Journal of Physics: Conference Series, 699 (2016) 012001(2016)

AI for Material Science
機能発現3+1モデル (2/2)

• 知りたいことを、既知の学問的知見を用い
て、モジュール構造で表現

• 各モジュールでのデータ解析は、ベイズ推論
とスパースモデリングの二つのみ

• ベイズ推論とSpMに深層ネットワークを組み
込むことは可能

• 各モジュールのデータ解析は、次スライドの
データ駆動科学の三つのレベルで階層的に
取り扱う

内容
• 自己紹介
• AIの歴史
• AI for Game:ゲームソフトの開発と終焉
• 2016年のAlpha Goの登場
• Demis HassabisによるAI for Scienceの提案

• AI for Scienceとデータ駆動科学
• AI for Material science
–機能発現の3+1ステップモデル

• AI for ScienceとLLM
• AI for Scienceの国内での動向
• まとめ

予測モデルの汎化性能

機械学習モデルに求められる性質

→未知データを上手く予測すること（汎化性能）

𝑦 ≈ 𝑤!𝑥! + 𝑤"𝑥" +⋯+ 𝑤#𝑥#
汎化性能を高めるためには，必要な特徴量を
見極めることが重要となる

20/57

スパースモデリング (1/2)

家の広さ 家の広さ

駅
ま
で
の
距
離

駅
ま
で
の
距
離

𝐸𝑟𝑟𝑜𝑟 1, 0 > 𝐸𝑟𝑟𝑜𝑟(1, 1) • 両⽅とも予測に必要

家賃
⾼安

𝐶 = (1, 0) 𝐶 = (1, 1)

21/57

スパースモデリング (2/2)

家の広さ 家の広さ

家賃
⾼安

𝐸𝑟𝑟𝑜𝑟 1, 0 < 𝐸𝑟𝑟𝑜𝑟(1, 1)
• 家の広さ ：必要
• 病院までの距離：不要

家の広さのみ 𝐶 = (1, 0) 家の広さと病院までの距離
𝐶 = (1, 1)

病
院
ま
で
の
距
離

病
院
ま
で
の
距
離

22/57

スパースモデリングとLLM
• スパースモデリングの鍵は、特徴量をどう選ぶか
である。

• 通常は、各研究者が個人の経験に基づいて、特
徴量を提案している。

• ここを、LLMを用いて全論文を検索して、関連す
る特徴量を全て列挙して、スパースモデリングす
る。

• 特徴量が莫大になると計算量爆発を起こすが、そ
の際は、愚直な全状態探索ではなく、レプリカ交
換モンテカルロ法で近似的に全状態探索を行う。

内容
• 自己紹介
• AIの歴史
• AI for Game:ゲームソフトの開発と終焉
• 2016年のAlpha Goの登場
• Demis HassabisによるAI for Scienceの提案

• AI for Scienceとデータ駆動科学
• AI for Material science
–機能発現の3+1ステップモデル

• AI for ScienceとLLM
• AI for Scienceの国内での動向
• まとめ

AI for Scienceの国内での展開
• NIMS(物質・材料研究機構: 文科省) :

AI for Material engineering
• NICT(情報通信研究機構: 総務省): 協
創的AI研究促進ファンド
•NICT内部のファンド

• DX-GEM(再生可能エネルギー最大導
入に向けた電気化学材料研究拠点: 文
科省)

内容
• 自己紹介
• AIの歴史
• AI for Game:ゲームソフトの開発と終焉
• 2016年のAlpha Goの登場
• Demis HassabisによるAI for Scienceの提案

• AI for Scienceとデータ駆動科学
• AI for Material science
–機能発現の3+1ステップモデル

• AI for ScienceとLLM
• AI for Scienceの国内での動向
• まとめ

まとめ
• AI for Gameの展開と終焉
• AI for Scienceの登場
–AIとScienceの双方向的相互作用

• AI for Scienceのロールモデル: AI for
Material engineering
• AI for Scienceの今まで
–機能発現の3ステップモデル

• AI for Scienceのこれから
–LLMの機能発現の3ステップモデルへ
のグランディング

