第88回SPring-8先端利用技術ワークショップ 第4回データ駆動科学によるデータ解析高度化 ~ベイズ計測~

2023.3.7

ベイズ推定のスキーム

~全てのユーザーのために~

東京大学 岡田研究室

片上 舜

-基調講演-	
13:05-13:35	「ベイズ計測」 岡田(真人(東京大学)
一般講演	
13:35-13:55	「メスバウアーハミルトニアン推定」 森口 椋太(東京大学)
13:55-14:15	「X線小角散乱プロファイルのベイズ推定」 林 悠偉(東京大学)
14:15-14:35	「時分割XRDのベイズ推定による化学反応モデルの理解 ₋ 横山 優一(JASRI)
14:35-14:55	「ベイズ統合 〜マルチモーダル測定へ〜」 水牧 仁一朗(JASRI)
14:55-15:15	「ベイズ推定のスキーム〜全てのユーザーのために〜」 片上 舜(東京大学)

自己紹介

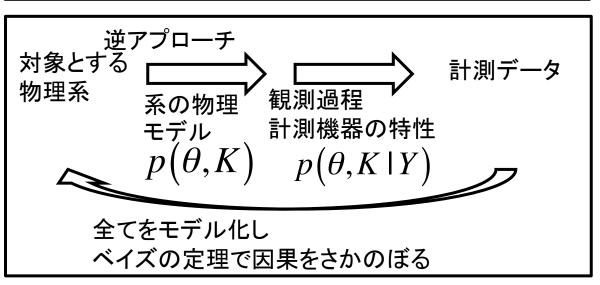
- ・ 東京大学・大学院理学系研究科 岡田研 $(2016 \sim 2022)$
 - 学位論文「ベイズ推論による物理モデルに対するパラメータ分布推定」
- · 東京大学·大学院新領域創成科学研究科 助教(2022/04~)

アンケート

- スペクトルや画像データからフィッティングを行なっている
- そのフィッティングの際に、パラメータを手打ちで決めている。最急降下法などを使っているが、うまくいかない。
- フィッティング用のモデルが複数あって、事前にどれ を使うかを決めておかないといけない。
- S/Nが悪いデータや欠損データをなんとかした。
- 複数計測の統合を行いたい。
- そのような方は、一度ベイズ計測をお試しください。

ベイズ計測



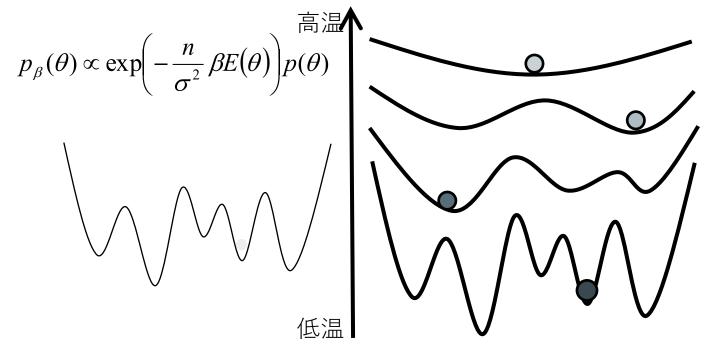


ベイズ推定って、どうやって実装したらいいのか。

レプリカ交換モンテカルロ法 ランダムスピン系の知見から

メトロポリス法

レプリカ交換モンテカルロ法



K. Hukushima, K. Nemoto, *J. Phys. Soc. Jpn.* **65** (1996).

ベイズ推定って、どうやって実装したらいいのか。

ベイズ計測オープンソースソフトウェアの構築

01 既存のベイズ推定ライブラリ

マルコフ連鎖モンテカルロ法 (MCMC) のライブラリ

- Stan
- PyMC3
- JAGS
- emcee
- BUGS

交換モンテカルロ法のライブラリ

- Tensorflow
- emcee
- ptmcmcsampler

01 計測科学における理想的なベイズ推論ツール

求められる機能性

- 基本的なベイズ推論ワークフローを完備
- ・ 迅速に実装可能かつ柔軟なモデル構築が可能なUI
- ・ 実行解析結果の可視化
- ・ベイズ推論の高速な実行

ベイズ推論

 $P(\theta|D) \propto P(D|\theta) \times P(\theta)$ 事後分布 尤度(モデル) 事前分布

 θ : 物理量 (モデルパラメータ)

D: 計測データ

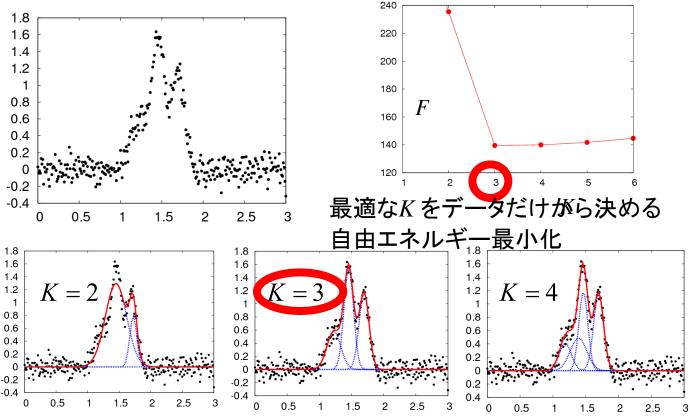
モデルの実装

データの取り込み

解本所終言果 の 石寉言忍

ベイズ推論ワークフロー

スペクトル分解



Nagata, Sugita and Okada, Bayesian spectral deconvolution with the exchange Monte Carlo method, *Neural Networks* 2012

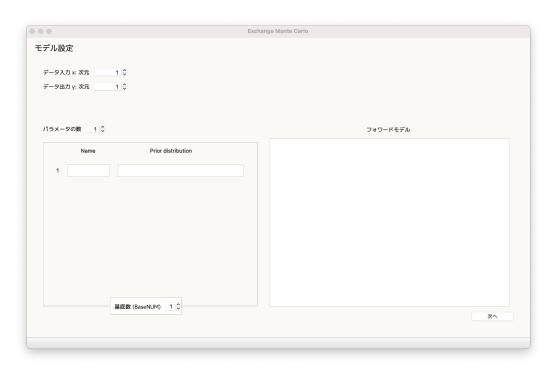
スペクトル分解の定式化

ガウス関数(基底関数)の足し合わせにより、スペクトルデータを近似

二乗誤差を最小にするようにパラメータをフィット(最小二乗法)

$$E(\theta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i; \theta))^2$$

01 EMCによるスペクトル分解実装



フォワードモデル

$$f(x;\theta) = \sum_{k=1}^{K} a_k \exp\left(-\frac{b_k(x - \mu_k)^2}{2}\right)$$

000			Exchange Monte Carlo	
モデル設	定			
データ入	n v· γρ∓	1 🕏		
データ出		1 🕏		
パラメー	タの数 3 ℃		フォワードモデル	
	Name	Prior distribution	for(int i=0; k=BaseNum;i++){ y+=a(i)*exp(-b(i)*pow(x[0]-mu(i),2)/2); }	
1	a	gamma(2,2)		
2	mu	normal(160,2)		
3	b	normal(10,2.5)		
		基底数 (BaseNUM) 3 🗘		
				次へ

フォワードモデル

$$f(x;\theta) = \sum_{k=1}^{K} a_k \exp\left(-\frac{b_k(x-\mu_k)^2}{2}\right)$$

パラメータの名前と事前分布

1 (a	gamma(2,2)
2 1	mu	normal(160,2)
3 l	0	normal(10,2.5)

フォワードモデル

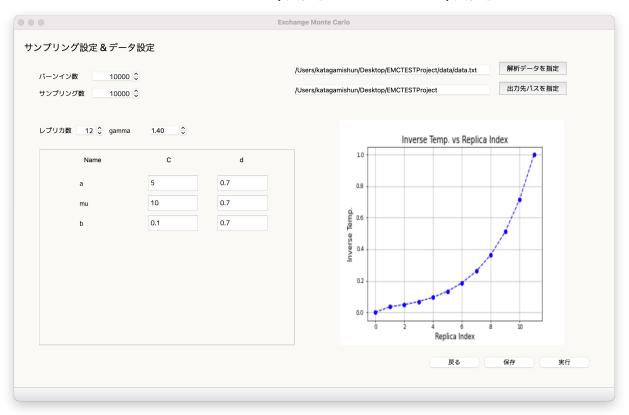
$$f(x;\theta) = \sum_{k=1}^{K} a_k \exp\left(-\frac{b_k(x - \mu_k)^2}{2}\right)$$

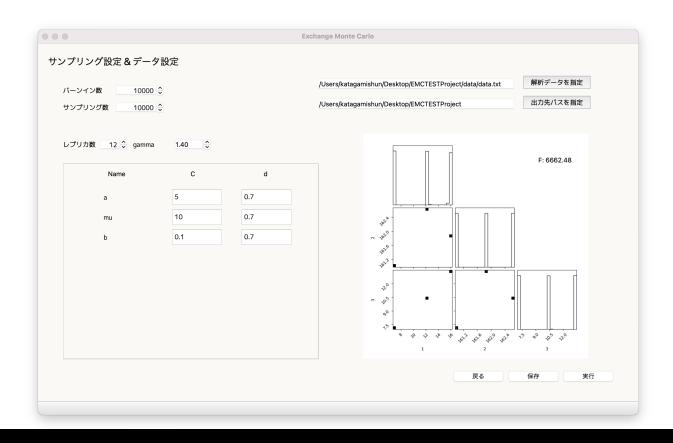
```
for(int i=0; i<BaseNum;i++){
   y += a(i)*exp(-b(i)*pow(x[0]-mu(i),2)/2)
}</pre>
```


サンプリング設定とデータの設定

プリング設定&デー					解析データを指定	
バーンイン数 1000 ♀ サンプリング数 1000 ♀					出力先パスを指定	
レプリカ数 8 🗘 gamma	1.00					
Name	С	d				
a						
b						
mu						
					n+	
				戻る	保存実行	

サンプリング設定とデータの設定





- 基本的なベイズ推論ワークフローを完備
- ・ 迅速に実装可能かつ柔軟なモデル構築が可能なUI
- ・実行解析結果の可視化
- ・ベイズ推論の高速な実行

