メスバウアーハミルトニアン推定

自己紹介

•慶應義塾大学理工学部物理学科

•量子ドットの非定常電流の理論解析

- 東京大学理学系研究科物理学専攻
 - ベイズ推論によるデータ解析
 - メスバウアースペクトルにおけるベイズ推論の論文 (Moriguchi, et al. 2022)

•日本物理学会 2023年春季大会 一般発表予定

SPring 8

SPring-8全ビームラインベイズ化計画

赤色BLが共用BL(JASRI担当): 計26本 全BL本数:62本

来年度には過半数をこえる予定

年度	2021	2022	2023	
導入	2	8	14	
全BL	26	26	26	15

アンケート

- スペクトルや画像データからフィッティングを行 なっている
- そのフィッティングの際に、パラメータを手打ち で決めている。最急降下法などを使っているが、 うまくいかない。
- フィッティング用のモデルが複数あって、事前に どれを使うかを決めておかないといけない。
- •S/Nが悪いデータや欠損データをなんとかした。
- •複数計測の統合を行いたい。
- そのような方は、一度ベイズ計測をお試しください。

目次

- メスバウアーにおけるハミルトニアン
- メスバウアーにおけるベイズ推論
- •数值実験
- ・まとめ

- メスバウアーにおけるハミルトニアン
- メスバウアーにおけるベイズ推論
- •数值実験
- ・まとめ

メスバウアー分光:物質中の原子核の吸収スペクトル

目次

- メスバウアーにおけるハミルトニアン
- •メスバウアーにおけるベイズ計測
- •数值実験
- ・まとめ

解析手法;物理モデル

物理モデル:
$$f(x;\Theta) = \sum_{i,j} \frac{1}{\pi} \frac{I_{i,j} \times \Gamma}{(x - E_{i,j} - E_{\text{shift}})^2 + \Gamma^2}$$

解析手法;物理モデル

スペクトルに関係する3つのハミルトニアン

 $\begin{pmatrix} \frac{3}{2}\alpha\cos\theta & -\frac{\sqrt{3}}{2}\alpha\sin\theta e^{i\phi} & 0 & 0\\ -\frac{\sqrt{3}}{2}\alpha\sin\theta e^{-i\phi} & \frac{\alpha}{2}\cos\theta & -\alpha\sin\theta e^{i\phi} & 0\\ 0 & -\alpha\sin\theta e^{-i\phi} & -\frac{\alpha}{2}\cos\theta & -\frac{\sqrt{3}}{2}\alpha\sin\theta e^{i\phi}\\ 0 & 0 & -\frac{\sqrt{3}}{2}\alpha\sin\theta e^{-i\phi} & -\frac{3}{2}\alpha\cos\theta \end{pmatrix}$

- 磁気的相互作用項: $H_{M3/2}, H_{M1/2}$
- •四極子相互作用項: $H_{Q3/2}, H_{Q1/2}$

各ハミルトニアン

 $H_{M3/2} =$

 $H_{Q3/2} =$

 $H_{Q1/2} = 0$

 $H_c = E_{center}$

解析手法;尤度

データの生成過程を以下のように仮定

解析手法;事前分布

事前分布にはパラメータの範囲などの事前情報を入れる

 $p(\Theta) = \varphi_A(A)\varphi_{B_{hf}} (B_{hf}) \varphi_\eta(\eta)\varphi_\theta(\theta)\varphi_\phi(\phi)\varphi_{E_{\text{Center}}} (E_{\text{Center}}) \varphi_\gamma(\gamma)$ $\varphi_{\Gamma}(\Gamma) = \text{Gamma}(\Gamma; \eta, \lambda)$ $= \frac{1}{G(\eta)} (\lambda)^{\eta}(\Gamma)^{\eta-1} \exp(-\lambda\Gamma)$ $\varphi_x(x) = \text{Uniform} (x; x_{\text{max}}, x_{\text{min}})$ $x = (A, B_{hf}, \eta, \theta, \phi, E_{\text{Center}})$

線幅 Γ のみ 時間とエネルギーの不確定性関係から下限が推定できるためガンマ分布 $au \cdot \Gamma \geq h$ 16

データが得られた時のパラメータの確率(事後確率)を計算 →事後確率から推定値を計算 (Nagata et al. 2012)

解析手法;事後確率

事後確率によってパラメータの推定が可能

解析手法; ベイズ自由エネルギー X二乗法 ベイズ法 $F = -\log \int p(D|\Theta)p(\Theta)d\Theta$ $\log \frac{p'(D|\Theta_{ML'})}{p(D|\Theta_{ML})}$ $F' = -\log \int p'(D|\Theta)p(\Theta)d\Theta$ _ "最尤推定量"付近で ベイズ自由エネルギーの ガウス分布に近似できる場合 大小関係によってどちら のモデルの確率が高いか 対数尤度比がγ二乗分布に 漸近することを利用 を評価

- 一般に尤度は単峰なガウス分布ではない
- パラメータ範囲などの事前情報を用いていない

→ベイズ自由エネルギーによるモデル選択が最適

目次

- •メスバウアーにおけるハミルトニアン
- メスバウアーにおけるベイズ推論
- •数值実験
- ・まとめ

以下二つの相互作用の組み合わせについて解析を行った

 $H_c + H_Q$ の人工データ

 $H_c + H_Q + H_M$ の人工データ

 H_M :磁気的相互作用項 H_Q :四極子相互作用項 H_c :異性体シフト

数値実験;ハミルトニアン選択

磁気的相互作用なしの場合の実験結果

 $\rightarrow H_c + H_Q$ が最も自由エネルギーが低い

数値実験;ハミルトニアン選択

磁気的相互作用ありの場合の実験結果

 \rightarrow $H_c + H_Q + H_M$ が最も自由エネルギーが低い

数值実験;事後分布

得られた物理量の事後分布から、 エネルギー固有値などの分布も計算可能

→得られたサンプルを用いて更なる議論が可能

目次

- •メスバウアーにおけるハミルトニアン
- メスバウアーにおけるベイズ推論
- •数值実験
- ・まとめ

まとめ

- ベイズ計測により、データドリブンでハミルトニアン 推定やモデル推定が可能
- 物理量の事後分布が得られることにより、解析結果の 議論の幅が広がる

目次

- •メスバウアーにおけるハミルトニアン
- メスバウアーにおけるベイズ推論
- •数值実験
- ・まとめ

今後の展望

では、ベイズ計測のデメリットはなんなのか?

→計算量

→パラメータ調整が最尤法と異なる

- •計算を削減する研究がすすんでいる
 - •事前分布モデリング
 - Kashiwamura, et al. 2022
 - サンプリングアルゴリズムの改良
 研究中

